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Abstract
The magnetic properties of nanoparticles of antiferromagnetic materials are
reviewed. The magnetic structure is often similar to the bulk structure, but
there are several examples of size-dependent magnetic structures. Owing to
the small magnetic moments of antiferromagnetic nanoparticles, the commonly
used analysis of magnetization curves above the superparamagnetic blocking
temperature may give erroneous results, because the distribution in magnetic
moments and the magnetic anisotropy are not taken into account. We
discuss how the magnetic dynamics can be studied by use of magnetization
measurements, Mössbauer spectroscopy and neutron scattering. Below the
blocking temperature, the magnetic dynamics in nanoparticles is dominated by
thermal excitations of the uniform mode. In antiferromagnetic nanoparticles,
the frequency of this mode is much higher than in ferromagnetic and
ferrimagnetic nanoparticles, but it depends crucially on the size of the
uncompensated moment. Excitation of the uniform mode results in a so-
called thermoinduced moment, because the two sublattices are not strictly
antiparallel when this mode is excited. The magnetic dipole interaction
between antiferromagnetic nanoparticles is usually negligible, and therefore
such particles present a unique possibility to study exchange interactions
between magnetic particles. The interactions can have a significant influence
on both the magnetic dynamics and the magnetic structure. Nanoparticles
can be attached with a common crystallographic orientation such that both the
crystallographic and the magnetic order continue across the interfaces.
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1. Introduction

Nanoparticles of magnetic materials have attracted much attention because their properties
in several ways differ from those of the corresponding bulk materials [1–4]. Therefore,
they provide opportunities to make materials and devices with new magnetic properties.
Magnetic nanoparticles have numerous technological applications, one of the most important
being for data storage in, for example, hard disks in computers [5]. Applications related
to medicine and biotechnology are becoming increasingly important [6, 7]. Stable colloidal
suspensions of magnetic nanoparticles—so-called ferrofluids—have numerous applications [8],
e.g. in loudspeakers. In most applications, ferromagnetic or ferrimagnetic particles are
used, because they possess large magnetic moments, and many experimental and theoretical
investigations have focused on these types of particles. Nanostructured antiferromagnetic
materials have important applications in, for example, spin valves [9, 10] and in the new
technology of magnetic random access memory (MRAM) [11]. It has been proposed
that nanostructured antiferromagnetic materials may be used to stabilize the magnetization
direction of ferromagnetic particles in magnetic recording media [12]. Nanoparticles of
antiferromagnetic materials may have interesting applications in, for example, new types of
hard magnetic materials consisting of composites of antiferromagnetic and ferromagnetic or
ferrimagnetic nanoparticles [13–16].

It is a general feature of magnetic nanoparticles that the (sublattice) magnetization
directions may fluctuate because the anisotropy energy may be comparable to the thermal
energy. The magnetic anisotropy of nanoparticles is usually assumed to be uniaxial, with the
anisotropy energy given by

E(θ) = K V sin2 θ, (1)

where K is the magnetic anisotropy energy constant, V is the particle volume and θ is the angle
between the (sublattice) magnetization direction and an easy direction of magnetization. Thus,
for a nanoparticle with magnetic anisotropy energy given by equation (1), there are minima at
θ = 0 and π , separated by an energy barrier, K V . The superparamagnetic relaxation time,
i.e., the average time between thermally induced reversals of the (sublattice) magnetization, is
approximately given by the Néel–Brown expression [17, 18],

τ = τ0 exp

(
K V

kBT

)
, (2)
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where kB is Boltzmann’s constant and T is the temperature. The value of τ0 is typically
in the range 10−13–10−9 s. The dependence of τ0 on temperature, particle size, magnetic
anisotropy, etc in ferromagnetic nanoparticles has been the subject of several investigations [1].
The superparamagnetic blocking temperature, TB, is defined as the temperature at which the
relaxation time is equal to the timescale of the experimental technique used for studies of the
magnetic properties. Thus, the blocking temperature is different for different experimental
techniques. In DC magnetization measurements, the timescale is typically of the order
of 10 s. Above the blocking temperature, the measured magnetization is the thermal
equilibrium value and therefore the coercivity vanishes. Below TB, the coercivity increases with
decreasing temperature. Often, the so-called zero-field-cooled (ZFC) and the field-cooled (FC)
magnetization curves are measured after cooling the sample in zero field or in a (small) applied
field, respectively, followed by measuring the magnetization as a function of temperature
during warming up in the (small) applied field. In the ZFC magnetization curves of magnetic
nanoparticles, one can observe a peak at a temperature of the same order of magnitude as the
blocking temperature. AC magnetization measurements have the advantage compared to many
other techniques that the timescale can be varied by varying the frequency. In Mössbauer
spectroscopy, the timescale τM is of the order of the nuclear Larmor precession time, i.e.,
typically a few nanoseconds. Below TB, the Mössbauer spectra are magnetically split and
in the case of 57Fe Mössbauer spectroscopy they consist of a six-line component (a sextet) for
each iron site in the material. Above TB, the spectra consist of singlets or doublets. Because
of the distribution of anisotropy energy barriers, K V , the spectra of samples of magnetic
nanoparticles normally consist of a superposition of sextets and doublets or singlets in a broad
temperature range.

Below the blocking temperature, the thermal energy is insufficient to give rise to frequent
magnetization reversals within a time corresponding to the timescale of the experimental
technique. However, the (sublattice) magnetization direction may still fluctuate in directions
close to an easy direction of magnetization. These fluctuations, termed collective magnetic
excitations, can be described as a uniform precession of the (sublattice) magnetization direction
around an easy direction in combination with transitions between precession states with
different precession angles [19].

It is noteworthy that the uniform precession mode, which can be considered as a spin wave
with wavevector q = 0, is predominant compared to the spin waves with q �= 0 because of the
energy gaps in the spin wave spectrum of nanoparticles [19]. In Mössbauer spectroscopy, the
precession and the transitions between the precession states can be considered fast compared
to the experimental timescale, and one therefore observes an average value of the magnetic
hyperfine field, which for a particle with magnetic energy given by equation (1) can be written
at low temperatures [20]:

Bobs ≈ B0

[
1 − kBT

2K V

]
. (3)

Here B0 is the saturation hyperfine field. Expressions for the magnetic hyperfine splitting
in Mössbauer spectra of nanoparticles with arbitrary form of the anisotropy have also been
derived [21], and it has been found as a general rule that collective magnetic excitations give
rise to a linear temperature dependence of the (sublattice) magnetization in nanoparticles.
This is in contrast to the temperature dependence at low temperatures in bulk materials for
which the decrease in (sublattice) magnetization with increasing temperature is predominantly
due to spin waves with q > 0 and is proportional to T α , with α = 3/2 in ferromagnetic
and ferrimagnetic materials and α = 2 in antiferromagnetic materials [22]. According to
equation (3), measurements of the temperature dependence of the magnetic hyperfine splitting
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can be used to estimate the anisotropy constant. There are several contributions to the
anisotropy, such as magnetocrystalline anisotropy, shape anisotropy and stress anisotropy.
In nanoparticles, the low symmetry around surface ions can also result in a large surface
anisotropy [23], and the effective magnetic anisotropy constant is expected to increase with
decreasing particle size because of the increase of the relative number of surface atoms.

The timescale in inelastic neutron scattering experiments is much shorter than that of
Mössbauer spectroscopy, and this technique can be used to measure the transition energy for
transitions between neighbouring uniform precession states [24, 25].

As discussed in sections 3 and 4.4, nanoparticles of antiferromagnetic materials have non-
zero magnetic moments and are therefore, strictly speaking, not antiferromagnetic. Anyway,
we will for simplicity here use the term ‘antiferromagnetic nanoparticles’ instead of the more
correct term ‘nanoparticles of antiferromagnetic materials’. Furthermore, to ease the language
we will refer to B (= μ0 H ) as the magnetic field (in vacuum) as is common in the literature,
instead of using the more correct term ‘magnetic induction’.

The size dependence of the magnetic properties of antiferromagnetic nanoparticles differs
in several ways from that of ferromagnetic and ferrimagnetic nanoparticles [1, 3, 19, 26, 27],
and this is one of the reasons for the current interest in antiferromagnetic nanoparticles. In this
paper we give a review of the special properties of antiferromagnetic nanoparticles and we will
compare with those of ferromagnetic and ferrimagnetic nanoparticles. We emphasize studies of
magnetic dynamics and the influence of interparticle interactions on the magnetic properties. In
section 2, we give some examples, that illustrate how magnetic structures in antiferromagnetic
nanoparticles can deviate from those of the corresponding bulk materials. Although an ideal
antiferromagnetic crystal has no net magnetic moment, nanoparticles of antiferromagnetic
particles usually have non-zero magnetic moments, and this is discussed in section 3.
Section 4 deals with fluctuations of the sublattice magnetization direction in antiferromagnetic
nanoparticles, and it is discussed how such fluctuations can be studied by different experimental
techniques, such as magnetization measurements, Mössbauer spectroscopy and neutron
scattering. We discuss the special features of the uniform mode in antiferromagnetic
nanoparticles, and furthermore, the existence of thermoinduced magnetization and macroscopic
quantum tunnelling phenomena are discussed. In section 5 we give a short review of studies of
the influence of magnetic interactions between antiferromagnetic nanoparticles.

2. Magnetic structure of antiferromagnetic nanoparticles

The magnetic structure of nanoparticles may for several reasons differ from that of the
corresponding bulk materials. By use of 57Fe Mössbauer spectroscopy, one can often get
information about magnetic structures by measuring the relative areas of the six absorption
lines. In the case of nanoparticles of ferrimagnetic materials, several 57Fe Mössbauer studies
have shown that the intensity of lines 2 and 5 does not vanish when large magnetic fields
are applied parallel to the gamma-ray direction, as expected for a perfect ferrimagnet for
which the sublattice magnetization directions should be parallel or antiparallel to the applied
field [28–30]. This suggests that the reduced number of magnetic neighbour ions at the
surface may give rise to magnetic frustration and a related localized spin-canting. It has
been suggested [29] that ferrimagnetic nanoparticles can be described as consisting of a
magnetically ordered core and a disordered (canted) shell with a thickness of the order of 1–
2 nm. However, this model may be too simple in most cases, because defects in the interior of
the particles also can result in spin-canting [31]. It is likely that spin-canting is also present in
nanoparticles of antiferromagnetic materials [26]. In a recent Mössbauer study of nanoparticles
of antiferromagnetic 57Fe-doped NiO [32], a strong indication of spin-canting was observed.
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Figure 1. (a) X-ray diffraction data and (b) neutron diffraction data for 15 nm hematite
nanoparticles. Reprinted with permission from [35]. Copyright 2000 by the American Physical
Society.

Theoretical studies of NiO nanoparticles [33, 34] have shown that the interior magnetic
structure can differ from the bulk magnetic structure, because of the influence of surface
effects. NiO nanoparticles may have a complex magnetic structure with as many as eight
sublattices [33], in contrast to bulk NiO, which has a simple two-sublattice structure.

Neutron diffraction allows for resolving magnetic structures of crystals. Figure 1(b) shows
room-temperature neutron powder diffraction data of 15 nm α-Fe2O3 particles [35]. For
comparison, x-ray powder diffraction data for the same particles are displayed in figure 1(a).
The neutron data show the hexagonal (003) and (101) diffraction peaks at the scattering vectors
Q = 1.37 and 1.50 Å

−1
, respectively. These peaks are not present in the x-ray data as

they are purely magnetic. The magnetic diffraction data are in accordance with the magnetic
structure of bulk α-Fe2O3 at the same temperature. The magnetic correlation length can be
estimated from the width of these diffraction lines using the Scherrer formula in the same
way as the crystallographic correlation length can be estimated from the width of the x-
ray diffraction lines. The analysis of the data in figure 1 showed that the magnetic and the
crystallographic correlation length are identical, i.e., each particle seems to consist of a single
magnetic domain [35]. Similar results were found in neutron diffraction studies of NiO [36].
MnO nanoparticles also have the same magnetic structure as the bulk material, but the magnetic
correlation length was reported to be smaller than the crystallographic correlation length [37].
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Cr nanoparticles have been found to have a simple antiferromagnetic structure, which differs
from the spin-density wave structure of bulk Cr [38].

The reduced number of magnetic neighbour ions at the surface results in a smaller
exchange field at the surface than in the interior of particles. As a consequence, the (sublattice)
magnetization near the surface decreases more quickly with temperature than the (sublattice)
magnetization in bulk materials. This has been illustrated by Mössbauer spectroscopy studies
of particles of α-Fe2O3, which were prepared with a core with only 56Fe and a thin surface
layer with 57Fe, such that only the surface atoms contribute to the spectra [39]. Similar results
have been found for β-FeOOH [40] and α-FeOOH [41]. The experimental results show an
almost linear temperature dependence of the surface magnetization, which is qualitatively in
accordance with theoretical models [26, 36, 39, 42]. The temperature dependence of the surface
magnetization of these antiferromagnetic nanoparticles is similar to that of ferrimagnetic γ -
Fe2O3 (maghemite) nanoparticles [39].

When determining the Néel temperature of antiferromagnetic nanoparticles, it is important
to be able to distinguish between a transition from a blocked to a superparamagnetic state and
a transition to a paramagnetic state. This is not always straightforward, and therefore a careful
data analysis may be needed in studies of the size dependence of the Néel temperature. Neutron
diffraction studies of plate-shaped, NiO nanoparticles with a thickness of only 2 nm indicated
a reduction of the Néel temperature by around 60 K [36]. This is in accordance with theoretical
estimates, which showed a lowering of the Néel temperature that depends crucially on the
thickness of the NiO plates. Similar neutron studies of much bigger α-FeOOH nanoparticles
(particle length ∼50 nm and width ∼12 nm) [43] also suggested a significant lowering of the
Néel temperature (by about 40 K). Both magnetization [44] and μSR [45] measurements of
CuO nanoparticles seem to indicate a decreasing Néel temperature with decreasing particle
size. In a neutron diffraction study of MnO particles with dimensions of about 14 nm in a
porous silica matrix, a slight increase of the Néel temperature has been reported [37]. It was
suggested that this could be explained by interaction with the support.

Another type of size dependence of the magnetic structure has been reported in
antiferromagnetic α-Fe2O3 (hematite) nanoparticles. In bulk α-Fe2O3, the sublattice
magnetization directions are parallel to the hexagonal [001] direction below the so-called Morin
temperature, TM ≈ 263 K. The Morin transition takes place because of a change of the sign
of the magnetic anisotropy constant. Above this temperature, the sublattice magnetization
directions lie in the (001) plane, and the two sublattices are not strictly antiparallel, but form an
angle of about 0.15◦, which results in a small net magnetization. In nanoparticles it has been
found that the Morin transition temperature decreases with decreasing particle size [46–48],
and it has been reported to be absent for particles with diameters below around 20 nm. This
size dependence of the Morin transition temperature can be explained by a size dependence of
the magnetic anisotropy constants [49].

Antiferromagnetic materials may perform a so-called spin–flop transition in large applied
magnetic fields, such that the sublattice magnetization vectors become nearly perpendicular to
the applied magnetic field. If the magnetic field is applied along the easy axis of a simple two-
sublattice uniaxial antiferromagnet, the spin–flop transition field at low temperatures is given
by [22]

Bsf ≈
√

2BE BA, (4)

where BE is the exchange field and BA = K/MS is the anisotropy field of an antiferromagnet
with sublattice magnetization MS. It is here assumed that BE � BA. If an uncompensated
moment (see section 3) is present, the spin–flop transition field will be enhanced [50]. In
a study of the spin–flop transition in samples of α-Fe2O3 nanoparticles with average size in
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the range from 36 to 159 nm, it was found that the critical field for the spin–flop transition
decreases with decreasing particle size [51]. These particles are so large that the influence
of an uncompensated magnetic moment may be insignificant. It was suggested that the size
dependence of the spin–flop transition field may be explained by a decrease of the exchange
field with decreasing particle size due to surface effects.

Ferritin is an iron storage protein with an antiferromagnetic iron-containing core. In
a recent study of ferritin particles with a magnetic core size of about 7 nm, no spin–flop
transition was found even in applied fields up to 55 T [52], although Bsf of ferritin according
to equation (4) should be less than 10 T [53]. This result may be explained by the large
uncompensated magnetic moment in these particles (see section 3) [50].

3. The magnetic moment of antiferromagnetic nanoparticles

Numerous magnetization studies of antiferromagnetic nanoparticles have shown that both the
initial susceptibility and the magnetization in large applied fields are considerably larger than
in the corresponding bulk materials. It was suggested by Néel [54] that this may be due to the
finite number of magnetic atoms in nanoparticles, which may lead to a difference in the numbers
of spins in the two sublattices because of random occupancy of lattice sites. This results in an
uncompensated magnetic moment, μu. In one specific model, Néel considered nanoparticles
with a random occupancy of all the lattice sites and found that the number of uncompensated
spins should be of the order of N1/2, where N is the total number of spins in a particle. If
the interior of the particles is assumed defect-free, but there is a random occupancy of surface
sites, the number of uncompensated spins should instead be proportional to the square root
of the number of surface sites, i.e., proportional to N1/3. In a third model, Néel considered
particles consisting of either an even or an odd number of planes with parallel spins, but with
alternating magnetization directions. In this case, the number of uncompensated spins should
rather be proportional to N2/3.

In experimental studies of the magnetization of antiferromagnetic nanoparticles, the
presence of impurities can be crucial [55]. Even tiny amounts of strongly magnetic phases,
which may not be visible in x-ray diffraction measurements, may dominate the magnetization of
the samples. During the preparation of many antiferromagnetic nanoparticles, impurity phases
can be difficult to avoid. For example, when preparing CoO nanoparticles, the samples may be
contaminated with ferromagnetic metallic Co or antiferromagnetic Co3O4 with a lower Néel
temperature. Similarly, CuO nanoparticles may be contaminated with Cu2O, which seems
to become increasingly stable with decreasing particle size [56]. In samples of α-Fe2O3

nanoparticles, a few per cent of ferrihydrite, which also is antiferromagnetic, can give a large
contribution to the magnetization [35].

Experimental studies of the magnetization of samples of NiO nanoparticles with different
average size [55] and without impurities of either ferromagnetic metallic Ni or Ni3+ ions have
suggested that the size dependence of the magnetic moment was proportional to N1/3, i.e., the
magnetic moments can be explained by a random occupation of surface sites, and the magnetic
moment of a nanoparticle is then approximately proportional to its diameter. Recently, high-
field Mössbauer studies of plate-shaped NiO nanoparticles have been used to estimate the
magnitude of the uncompensated magnetic moment [32]. The spectra were analysed by use of a
model [57], in which the influence of the magnetic anisotropy and the uncompensated magnetic
moment on the positions and relative areas of the Mössbauer lines was taken into account. The
estimated value of μu was also in this case in accordance with a random occupation of surface
sites [32].

The magnetic core in ferritin is usually poorly crystalline. For such particles, the
uncompensated magnetic moment has been found to be of the order of N1/2 [53, 58–60],
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suggesting a more or less random occupation of all lattice sites. Ferrihydrite particles, which
have a disordered structure similar to that of ferritin cores, also have magnetic moments of the
order of N1/2 [61].

It has recently been suggested that the magnetic moment of nanoparticles of
antiferromagnetic materials has a contribution, μt, from so-called thermoinduced
magnetization [62]. This contribution is related to the fact that the two sublattices of a
simple antiferromagnet are not strictly antiparallel when the uniform mode is excited, and
the difference in precession angles increases with increasing temperature, such that the net
magnetic moment increases with increasing temperature. This is discussed in more detail
in section 4.4. In general, the total magnetic moment of an antiferromagnetic nanoparticle
is expected to have contributions from both uncompensated spins and a thermoinduced
moment [62, 63].

In many experimental studies of the magnetization of magnetic nanoparticles, the
magnetization has been measured as a function of the applied magnetic field, Bext, at different
temperatures. Typically, the magnetization curves above the blocking temperature have been
fitted with a Langevin function

L

(
μBext

kBT

)
= coth

(
μBext

kBT

)
− kBT

μBext
, (5)

where μ is the magnetic moment of a particle. This model has been successfully used to
fit data for ferromagnetic and ferrimagnetic nanoparticles. In most fits of magnetization
data for antiferromagnetic nanoparticles, a linear term was also included to account for the
antiferromagnetic susceptibility such that the magnetization curves were fitted to the expression

〈M〉T = M0(T )L

(
μBext

kBT

)
+ μ−1

0 χAF Bext, (6)

where M is the magnetization, M0(T ) is the saturation magnetization at temperature T , μ0 is
the vacuum permeability and χAF is the antiferromagnetic susceptibility. It has been found in
many experimental studies of antiferromagnetic nanoparticles that this model gives good fits to
the experimental data. In several studies, the estimated magnetic moments were surprisingly
found to increase with increasing temperature [58, 59, 61, 64, 65]. This is consistent with a
contribution from thermoinduced magnetization [62]. It has, however, been pointed out by
Silva et al [66] that the distribution of the magnitude of the magnetic moments in a sample
also can explain such data. This is because the smallest magnetic moments are far from
being saturated at high temperatures and therefore give an almost linear contribution to the
magnetization, which may be attributed to the antiferromagnetic susceptibility. Thus, when
the temperature is increased, the fitted Langevin functions will be increasingly dominated by
the larger magnetic moments, and this may at least partly explain the apparent increase of the
magnetic moment.

The magnetic anisotropy is usually neglected in the fits of magnetization curves of
nanoparticles, but especially in the case of antiferromagnetic nanoparticles this can result
in erroneous results [67]. The Langevin function may be a good approximation to the
magnetization above the blocking temperature if the Zeeman energy (∼μBext) is large
compared to the anisotropy energy (∼K V ). However, even for ferromagnetic and ferrimagnetic
nanoparticles with relatively large magnetic moments, a finite magnetic anisotropy can give rise
to deviations from the Langevin behaviour [68, 69]. In antiferromagnetic nanoparticles with
relatively small magnetic moments, the Zeeman energy will often be small compared to the
anisotropy energy, and the deviation of the magnetization curves from the Langevin function
may therefore be significant. Figure 2 shows simulated magnetization curves for particles with
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Figure 2. Simulated magnetization curves of antiferromagnetic nanoparticles above the blocking
temperature showing the normalized magnetization as a function of μBext/kBT for various values
of the anisotropy parameter K V/kBT . Reprinted with permission from [67]. Copyright 2006 by
Elsevier.

uniaxial anisotropy and a random orientation of the easy axes as a function of μBext/kBT
for various values of the anisotropy energy parameter K V/kBT . In the simulations, it was
assumed that the temperature is above the blocking temperature. No linear terms due to the
antiferromagnetic susceptibility were included in these simulations. It is clearly seen that a
finite anisotropy changes the shape of the magnetization curves, and especially for values of
K V/kBT of the order of 5–10, the magnetization curves show a slope at high fields, which
erroneously might be attributed to an antiferromagnetic susceptibility. For this reason, the
parameters obtained from fits of magnetization curves for antiferromagnetic nanoparticles with
equation (6) may be incorrect.

Above the blocking temperature, the initial susceptibility of a sample of non-interacting
nanoparticles with a finite anisotropy and with a random orientation of easy axes is given
by [32, 67, 70]

χi = nμ0

3kBT
〈μ2〉 + χAF, (7)

where n is the number of particles per volume and χAF is the antiferromagnetic susceptibility,
which may be comparable to the bulk value [55]. It is remarkable that the first term in
equation (7) is independent of the anisotropy energy constant. Moreover, it is also independent
of the detailed shape of the distribution of the magnetic moments of the particles in the sample.
It has therefore been suggested [32, 67] that one should focus on the initial susceptibility in
magnetization studies of antiferromagnetic particles.

As will be discussed in section 5, antiferromagnetic nanoparticles may interact strongly
via exchange interactions between surface atoms of neighbouring particles. Interparticle
interactions can also have a large influence on the magnetic moments that are derived by use
of equation (7) [32, 71, 72]. Therefore, equation (7) should only be used to estimate magnetic
moments of non-interacting nanoparticles.

Below the blocking temperature, the hysteresis loops of samples of antiferromagnetic
nanoparticles show some unusual properties. Studies of, for example, ferritin [60],
NiO [33, 73], CuO [44], Co3O4 [74], MnO [75] and Cr2O3 [65] have shown very large
coercivities, and after field cooling antiferromagnetic nanoparticles often show exchange bias.

9



J. Phys.: Condens. Matter 19 (2007) 213202 Topical Review

These features can be explained by the exchange coupling between the uncompensated spins
and the antiferromagnetic regions. In the case of NiO nanoparticles it has also been suggested
that the phenomena can be explained by a multi-sublattice structure [33, 76].

4. Magnetic fluctuations in non-interacting antiferromagnetic nanoparticles

As discussed in section 1, the magnetization direction in nanoparticles fluctuates at
finite temperatures, such that the magnetization directions frequently are reversed in the
superparamagnetic region and are affected by collective magnetic excitations at lower
temperatures. Here, we give an overview of the application of various experimental techniques
for studies of magnetic fluctuations in antiferromagnetic nanoparticles.

4.1. Magnetization measurements

In DC magnetization studies of nanoparticles, the magnetic dynamics are commonly studied
by ZFC and FC magnetization measurements. If a sample of non-interacting particles is truly
monodisperse, the ZFC magnetization curve will have a maximum at the blocking temperature.
However, a sample of ferromagnetic or ferrimagnetic particles with a particle size distribution
will have its maximum at a higher temperature, Tpeak [77, 78], i.e., Tpeak = βTbm, where β > 1
and Tbm is the median blocking temperature corresponding to the median volume Vm, defined
such that the sum of the volumes of the particles with V > Vm contributes 50% of the total
volume. The value of the parameter β depends on the size distribution. For samples with a log-
normal distribution, β increases from 1.0 to around 2.0 when σV (the standard deviation of ln V )
is increased from 0.0 to 1.5 [79]. In antiferromagnetic nanoparticles with an uncompensated
magnetic moment, the magnetic moment is not proportional to the volume as is the case for
ferromagnetic particles. Therefore, there may not be a simple relation between the values of β

and σV . Some experimental studies have suggested that the uncompensated moment may be
proportional to the diameter [32, 55]. In this case, the value of the parameter β has been found
to decrease with increasing values of σV in a log-normal distribution [79].

It is important to realize that the magnetic susceptibility of antiferromagnets has a
maximum at the Néel temperature [22]. Therefore, a peak in a ZFC magnetization curve may
not always be related to a superparamagnetic blocking temperature, but it may be due to a
transition from an antiferromagnetic state to a paramagnetic state.

If the moment distribution is known, the superparamagnetic blocking temperature can be
estimated from Tpeak in a ZFC magnetization curve, but since there usually are two unknown
parameters, τ0 and K , in equation (2), both of these parameters cannot be estimated from a
ZFC magnetization curve. However, this is possible by using AC susceptibility measurements
with different frequencies. In AC susceptibility measurements one measures the complex
susceptibility, which can be written [78]

χAC(ω, T ) = χ ′(ω, T ) + iχ ′′(ω, T ), (8)

where χ ′ and χ ′′ are the in-phase and the out-of-phase components of the measured
susceptibility, respectively, and ω is the angular frequency. The in-phase susceptibility has
a maximum at a temperature Tmax, which is related to the blocking temperature and the particle
size distribution as for the ZFC magnetization curve. The temperature corresponding to the
maximum of the out-of-phase susceptibility is less sensitive to the size distribution and thus an
analysis based on just the maxima is better carried out using χ ′′ data. Such data can, however,
be difficult to measure accurately for low-moment samples, and therefore in many studies of
antiferromagnetic nanoparticles only χ ′ data have been reported. Several AC susceptibility

10



J. Phys.: Condens. Matter 19 (2007) 213202 Topical Review

Figure 3. In-phase AC magnetic susceptibility of horse spleen ferritin as a function of temperature
at several frequencies, f . The dashed line indicates the peak positions. In the inset is shown 1/Tmax

versus log f . Reprinted with permission from [52]. Copyright 2007 Elsevier.

measurements have been made on ferritin [52, 59, 80, 81] and α-Fe2O3 [35]. In studies
of superparamagnetic relaxation, ferritin has the advantage that the magnetic cores are well
separated by organic non-magnetic material such that the influence of interparticle interaction
is negligible. Figure 3 shows in-phase susceptibility data for horse spleen ferritin obtained at
frequencies in the range f = ω/2π = 10–10 000 Hz [52]. As indicated by the dashed line,
the peak position is, as expected, shifted towards higher temperatures, when the frequency
is increased. The inset shows that 1/Tmax varies linearly with log f in accordance with
equation (2). From these data an anisotropy energy constant of K = 2.5 × 104 J m−3 and
a value of τ0 s ≈ 10−12–10−13 were estimated [52].

4.2. Mössbauer spectroscopy studies

Mössbauer spectroscopy has been extensively used for studies of superparamagnetic relaxation
and collective magnetic excitations in nanoparticles. As the timescale of Mössbauer
spectroscopy, τM, is of the order of a few nanoseconds, it is a good supplement to DC and AC
magnetization measurements. By combining ZFC magnetization measurements and Mössbauer
data for ferritin, Dickson et al [82] estimated a value of τ0 similar to that obtained by the AC
susceptibility measurements discussed above.

The values of τ0 and K can also be estimated from series of Mössbauer spectra obtained
at different temperatures. As an example of such a Mössbauer study of non-interacting
antiferromagnetic nanoparticles, figure 4 shows spectra of 15 nm α-Fe2O3 particles at different
temperatures [35]. The spectra show the typical features of superparamagnetic nanoparticles.
At low temperatures, the spectra are magnetically split because the superparamagnetic
relaxation is slow compared to τM. With increasing temperature, an increasing number
of particles have relaxation times shorter than τM, resulting in an increasing area of a
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Figure 4. Mössbauer spectra of 15 nm hematite nanoparticles measured at the indicated
temperatures. The solid lines are fits obtained as described in the text. Reprinted with permission
from [35]. Copyright 2000 by the American Physical Society.

central doublet in the spectra. The fits shown in the figure were obtained using the
Blume–Tjon model [83] for Mössbauer relaxation spectra, taking into account the particle
size distribution [35]. All the spectra were fitted simultaneously, assuming that the
superparamagnetic relaxation time is given by equation (2). From the fits, the values τ0 ≈
5.0 × 10−11 s and K V/kB ≈ 600 K (corresponding to K ≈ 4500 J m−3) were estimated [35].
Similar fits of temperature series of Mössbauer spectra of a number of samples of α-Fe2O3
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Figure 5. (a) Magnetic anisotropy constant and (b) the prefactor τ0 for α-Fe2O3 nanoparticles as a
function of particle diameter. Reprinted with permission from [46].

nanoparticles with average particle diameter in the range d ≈ 6–30 nm have been used to
estimate the size dependence of K and τ0 [46]. The data are shown in figure 5. It can be
seen in figure 5(a) that the magnetic anisotropy constant increases significantly with decreasing
particle size, especially for the smallest particles. This is presumably because of the influence
of surface anisotropy. Qualitatively similar results for the size dependence of the magnetic
anisotropy constants have been found for ferrimagnetic γ -Fe2O3 [84] and ferromagnetic α-
Fe particles [85]. The data for α-Fe2O3 nanoparticles can be fitted well with an empirical
d−2 dependence of the magnetic anisotropy constant [46, 86]. This implies, according
to equation (3), that the reduction of the magnetic hyperfine field at a given temperature
should be proportional to d−1. Such a size dependence has also been found for maghemite
nanoparticles [84] and in several studies of magnetic nanoparticles in soil samples [86]. The
data in figure 5(b) show that the value of τ0 decreases with decreasing particle size.

Ferromagnetic and ferrimagnetic nanoparticles usually have relatively large magnetic
moments, typically in the range 103–105 Bohr magnetons, and even in relatively small applied
fields (Bext � 1 T) at ambient temperature, the Zeeman energy may be larger than the
thermal energy. Consequently, the superparamagnetic relaxation above TB can be suppressed by
relatively small external fields. As discussed in section 3, the Zeeman energy of ferromagnetic
and ferrimagnetic nanoparticles in moderate applied fields is typically also larger than the
anisotropy energy. The magnetic splitting of the Mössbauer spectra is then to a good
approximation proportional to the sum of the external field and a contribution proportional
to the Langevin function. At large applied fields (μBext � kBT ) the hyperfine splitting can be
approximated by the simple expression [87]

Bobs = B0

(
1 − kBT

μBext

)
− Bext. (9)

(The minus in front of Bext is due to the fact that the direction of the hyperfine field is usually
opposite to that of the applied field.) Thus a plot of Bobs + Bext as a function of B−1

ext gives a
straight line with a slope from which the magnetic moment can be estimated.

In antiferromagnetic nanoparticles which have smaller magnetic moments (typically of
the order of a few hundred Bohr magnetons), much larger fields are required to suppress the
superparamagnetic relaxation to the same extent. Figure 6 shows Mössbauer spectra of human
spleen ferritin at 100 K in applied magnetic fields up to 10 T [88]. The zero-field spectrum
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Figure 6. Mössbauer spectra of human spleen ferritin at 100 K obtained in the indicated applied
magnetic fields. Reprinted with permission from [88]. Copyright 1987 by Elsevier.

consists of a doublet, indicating that the particles are superparamagnetic at this temperature,
but a magnetic splitting is induced when external magnetic fields are applied. The saturation
hyperfine field in ferritin is of the order of 45 T, corresponding to a splitting of lines 1 and 6
in the spectrum around 15 mm s−1. The figure shows that even at the largest applied fields, the
average magnetic hyperfine splitting is much smaller, indicating that the particles are far from
being magnetically saturated. The analysis of the spectra of antiferromagnetic nanoparticles in
applied fields is much more complex than that of the corresponding spectra of ferromagnetic
and ferrimagnetic nanoparticles. For small applied fields, the anisotropy energy may be large
compared to the Zeeman energy, and therefore the relaxation takes place between two minima
with different energies, which depend on the size and direction of the applied field. At large
applied fields, this model may not be appropriate, because the Zeeman and the anisotropy
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energies may be comparable. Because of these complications it is not straightforward to
obtain reliable values for the magnetic moments from such Mössbauer measurements on
antiferromagnetic nanoparticles [53, 88].

4.3. Neutron scattering studies

Neutron scattering is another technique that is useful for studies of time-dependent phenomena.
Magnetic dynamics in solids can be studied by inelastic neutron scattering. In such studies,
one can measure, for example, the energy distribution of neutrons that are diffracted at
a wavevector corresponding to a magnetic diffraction peak. This gives information about
magnetic excitations, such as spin waves, and in studies of magnetic nanoparticles this
technique can give information on both superparamagnetic relaxation and uniform magnetic
excitations [24, 25]. The timescale of neutron scattering is much shorter than that of Mössbauer
spectroscopy. Therefore, neutron scattering makes it possible to study details of magnetic
fluctuations that are not revealed in Mössbauer spectroscopy and magnetization measurements.
For example, neutron scattering can be used to estimate the energy related to transitions
between uniform precession states, whereas Mössbauer spectroscopy only allows measurement
of a magnetic hyperfine field that is averaged over all magnetic fluctuations. Before discussing
neutron data, it is useful to look in more detail at magnetic excitations in nanoparticles.

For a cubic ferromagnetic or ferrimagnetic material with lattice constant a, the dispersion
relation for spin waves for which aq 
 1 can be written [3, 19, 89, 90] as

h̄ωq = Dq2 + gμB BA, (10)

where ωq is the angular frequency of a spin wave with wavevector q , D is the exchange stiffness
constant, g is the Landé factor, μB is the Bohr magneton and BA = 2K/M is the anisotropy
field with M being the magnetization. In nanoparticles with cubic shape, in which surface
effects are neglected, the allowed values of the wavevector are given by [19, 91]

q = nπ/d, n = 0, 1, 2, 3 . . . (11)

where d is the side length. Similar quantization of the spin wave spectrum can be found also
in real nanoparticles [92]. Because of this quantization, there are in very small particles large
energy gaps between the uniform (n = 0) mode and the modes with n > 0. Therefore,
spin waves with q = 0 are predominant in nanoparticles, and the first term in equation (10)
can often be neglected [19]. In many theoretical investigations of magnetic excitations in
nanoparticles, the q = 0 mode has been neglected, and the calculations therefore only give
information on the modes with q > 0. However, if a sufficiently large magnetic field is
applied, the excitations of the uniform mode are suppressed, and the magnetic dynamics can
then be dominated by modes with q > 0 [91]. The z-components of the magnetic moments of
neighbouring precession states of the uniform mode, with slightly different precession angles,
differ by gμB [22]. In inelastic neutron spectra, the uniform mode gives rise to separate peaks
at energies corresponding to the energy difference, ε0, between neighbouring precession states.
In ferromagnetic and ferrimagnetic nanoparticles this energy difference is given by [19, 25]

ε0 = h̄ω0 = gμB BA. (12)

Typically, BA is of the order of 0.1 T, corresponding to ε0 ≈ 0.01 meV. Thus, the peaks
are hard to observe in a typical neutron spectrometer with an energy resolution of the order of
0.1 meV [25]. However, if a large magnetic field, Bext � BA, is applied, the energy difference
is given by

ε0 ≈ gμB Bext (13)

and the inelastic peaks may then be visible for applied fields larger than ∼1 T [25].
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Figure 7. Inelastic neutron scattering data for 15 nm hematite nanoparticles. (a) Data obtained
at zero applied magnetic field at the indicated temperatures. (b) Data obtained at 268 K at the
indicated applied magnetic fields. Reprinted with permission from [24]. Copyright 1997 by the
American Physical Society.

In antiferromagnetic nanoparticles the situation is different because the dispersion relation
for spin waves is given by the more complex expression [22]

h̄ωq = gμB[(BE + BA)2 − B2
E(1 − Cq2)]1/2. (14)

Here BA = K/MS is the anisotropy field for an antiferromagnet with sublattice magnetization
MS, BE is the exchange field and C is a constant. Thus, in nanoparticles, in which the
uniform mode is predominant, the energy difference between neighbouring precession states,
for BE � BA, is given by [93, 94]

ε0 = h̄ω0 ≈ gμB

√
2BE BA. (15)

The exchange field may be up to around 1000 T and the energy, ε0, of the uniform mode
in antiferromagnetic nanoparticles can therefore be much larger than that of ferromagnetic and
ferrimagnetic nanoparticles and can more easily be observed in inelastic neutron scattering
experiments in zero applied field.

As an example, we consider inelastic neutron scattering studies of 15 nm α-Fe2O3

nanoparticles from the same batch as the sample used for the neutron and x-ray diffraction
data in figure 1 and the Mössbauer spectra in figure 4. The energy distribution of neutrons
scattered at Q = 1.37 Å

−1
, corresponding to the (003) peak, is shown in figure 7 [24].

Data are displayed for different temperatures and applied magnetic fields. The neutron data
in figure 7(a) show a relatively narrow, quasielastic line, centred at energy ε = 0 meV. On
both sides of this quasielastic line, inelastic lines can be seen with an intensity that increases
with increasing temperature. The energy distribution (apart from background terms) can be
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Figure 8. Parameters obtained from fits of the inelastic neutron data shown in figure 7(a).
(a) Relative area of the quasielastic peaks. (b) Superparamagnetic relaxation parameter � obtained
from the line width of the quasielastic peak. Reprinted with permission from [24]. Copyright 1997
by the American Physical Society.

described by [24, 95, 96]

I (ε) = A1

π
D(ε)

�

ε2 + �2
+ A2

π
D(ε)

2γ ε2
0

(ε2 − ε2
0)

2 + 4γ 2ε2
, (16)

where A1 is the area of the quasielastic peak and A2 is the area of the inelastic components. ±ε0

are the positions of the inelastic peaks, γ is the width of these peaks and � is the width of the
quasielastic peak. D(ε) is the detailed balance factor due to the difference in the population of
the creation and annihilation states of the uniform excitations. Due to the presence of adsorbed
water on the surface of the particles there is a strong incoherent elastic signal increasing the
signal at ε = 0 meV. Before comparing with experimental data, the sum of I (ε) and the
incoherent signal must be convoluted with the experimental resolution function. Some of the
parameters, derived from fits to the zero-field experimental data of figure 7(a), are shown in
figure 8. The relative area of the inelastic peaks is proportional to 〈sin2 θ〉 and therefore it
increases with temperature. At low temperatures the area ratio is given by

A1

A1 + A2
≈ 1 − kBT

K V
. (17)

The fit to the temperature dependence of A1/(A1 + A2), shown in figure 8(a), was
obtained using a more exact analytical expression [24], and the value K V/kB ≈ 700 K
was obtained. The width of the quasielastic line increases with increasing temperature due
to superparamagnetic relaxation as seen in figure 8(b), and the line broadening is inversely
proportional to the superparamagnetic relaxation time, � = h/τ [95]. From the temperature
dependence of �, the values K V/kB ≈ 500 K and τ0 ≈ 1.4 × 10−11 s were estimated [95].
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Figure 9. Energy of the uniform mode as a function of the uncompensated magnetic moment of
antiferromagnetic nanoparticles. The lines were calculated using equation (18) with BA = 0.01 T
and BE = 300 T. Reprinted with permission from [63]. Copyright 2006 by the American Physical
Society.

The values of magnetic anisotropy energy and τ0, obtained from neutron scattering, are in good
agreement with those obtained from the Mössbauer studies (section 4.1).

The inelastic neutron data in figure 7(b), measured at 260 K in various applied magnetic
fields, show that the inelastic peaks are shifted to larger energies when the field is increased
with a related decrease of the relative area. The field dependence of ε0 at high fields was found
to be in accordance with equation (13), with g ∼= 2 as expected for Fe3+ [24].

The expression for the energy of the uniform mode in an antiferromagnet (equation (15))
was derived for a perfect two-sublattice antiferromagnet with anisotropy energy given by
equation (1), i.e., the existence of an uncompensated magnetic moment, μu, was not taken
into account. It is, however, noteworthy that even a small difference in the sublattice magnetic
moments can have an influence on the value of ε0. An antiferromagnetic nanoparticle with an
uncompensated magnetic moment should in principle be considered as a ferrimagnet with a
small difference between the values of the sublattice magnetizations, and equation (15) should
then be replaced by [93, 97–100]

ε±
0 = 1

2 gμB BE(
√

4λ2 + 4λ(2 + ξ) + ξ 2 ± ξ). (18)

Here, λ = BA/BE and ξ = μu/(MSV ) is the ratio of the uncompensated moment and
the sublattice magnetic moment. Thus, instead of the single mode in the ideal antiferromagnet
with energy given by equation (15), there are now two modes with energies that depend on the
magnitude of the uncompensated magnetic moment. The dependence of ε±

0 on the value of
ξ , calculated by use of equation (18), is shown in figure 9. Because of the different thermal
populations of the two modes, the low-energy mode will give the predominant contribution
to the magnetic dynamics. Even small values of the uncompensated moment can result in
significant changes of the energies. For example, a value of ξ around 0.01 reduces the energy
of the low-energy mode by a factor of about two. Since the value of ξ in general is expected
to increase with decreasing particle size, the effect should be largest in very small particles.
In accordance with this, it has been found that the effect is insignificant in 15 nm α-Fe2O3

nanoparticles, but clearly visible in 8 nm α-Fe2O3 nanoparticles [99].
The use of the anisotropy energy given by equation (1) is only a rough approximation

for α-Fe2O3 nanoparticles, because the particles have both a small in-plane anisotropy and
a larger out-of-plane anisotropy. If this is taken into account, one finds that there are two
different uniform modes even in the absence of an uncompensated moment. The inelastic
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neutron scattering data, shown in figure 7, give information about a low-energy uniform mode,
which is characterized by an elliptic precession very close to the (001) plane, and the parameters
obtained from this mode give information on the in-plane anisotropy. It has been shown [49]
that inelastic neutron data for neutrons scattered at Q = 1.50 Å

−1
give information about a

high-energy uniform mode, which is characterized by fluctuations out of the plane. Neutron
data therefore make it possible to estimate the values of both the in-plane and the out-of-plane
anisotropy constants [49].

NiO particles also have a small in-plane anisotropy, but a much larger out-of-plane
anisotropy. In this case the energies of the uniform modes are less dependent on the magnitude
of the uncompensated moment [100]. The energy of the low-energy uniform mode of
NiO nanoparticles, estimated from inelastic neutron scattering experiments, was considerably
smaller than predicted by equation (15), when inserting the bulk exchange field and an
anisotropy field derived from the temperature dependence of the relative area of the inelastic
peaks [100]. This suggests that the effective exchange field in the nanoparticles is smaller
than the bulk value, as studies of the spin–flop transition in α-Fe2O3 nanoparticles also have
suggested [51].

4.4. The uniform mode in antiferromagnetic nanoparticles and thermoinduced magnetization

In early studies of superparamagnetism [17, 18] and collective magnetic excitations [20, 21],
ferromagnetic, ferrimagnetic and antiferromagnetic particles were all treated as classical spins,
i.e., it was assumed that the total spin of a particle was so large that quantization could be
neglected. This is a good approximation for ferromagnetic and ferrimagnetic particles for
which the total spin S typically is of the order of 103–105. When the uniform mode is excited,
the possible values of the z-component of the spin are Sz = S, S − 1, S − 2, . . . ,−(S −
2),−(S − 1),−S, i.e., there are 2S + 1 precession states with z-components of the magnetic
moments given by gμBSz . This results in the energy differences between neighbouring states
given by equations (12) and (13).

In ferromagnetic nanoparticles all ionic spins precess in parallel in the uniform mode.
However, in antiferromagnetic nanoparticles the two sublattices are not strictly antiparallel
when the uniform mode is excited, but form different angles θA and θB with the easy
axis [93, 94], as illustrated in figure 10. These different precession angles result in a
contribution to the magnetic moment of the particle. For simplicity, we first consider an
antiferromagnetic nanoparticle with magnetic anisotropy energy given by equation (1) and
without an uncompensated magnetic moment. For a particle with BA 
 BE the two angles
are related by [19, 101]

sin θA

sin θB
= 1 ± δ, (19)

where

δ ≈
√

2BA

BE
. (20)

The number of precession states in an antiferromagnetic nanoparticle is determined by
the fact that the difference in magnetic moments of neighbouring precession states is given
by gμB [19]. Because the differences between the precession angles and θB are small, the
number of precession states in an antiferromagnetic nanoparticle is much smaller than the
corresponding number of states in a ferromagnetic nanoparticle (by a factor of the order of
δ [19]). For this reason the temperature dependence of the average hyperfine field deviates
from equation (3) at low temperatures due to quantum effects [19].
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Figure 10. Schematic illustration of the uniform mode in nanoparticles of antiferromagnetic
nanoparticles. Reprinted with permission from [62]. Copyright 2004 by the American Physical
Society.

The magnetic moment due to the different precession angles (the thermoinduced moment)
has at low temperatures an absolute value given by [19]

|μt| = MSV | cos θA − cos θB| ≈ MSV δ sin2 θB. (21)

In zero applied field, precession states with magnetic moments up and down are
degenerate, and the average magnetic moment is therefore zero, but the average of the absolute
value of μt is given by [19, 62]

〈|μt|〉 ≈ 2kBT√
2BA BE

. (22)

Thus, the absolute value of the moment increases linearly with temperature and the
thermoinduced moment is independent of the particle volume. This can be deduced from
equation (21), since 〈sin2 θB〉 is inversely proportional to the volume, V [19].

In an applied magnetic field the degeneracy is lifted, and therefore a finite magnetization
can be observed. The initial susceptibility due to the thermoinduced magnetization is given
by [19, 62]

χi = 4μ0

V

kBT

BA BE
, (23)

i.e., the initial susceptibility also increases linearly with temperature.
Because nanoparticles of antiferromagnetic materials usually also have an uncompensated

magnetic moment, μu, the initial susceptibility will have a contribution related to μu and is then
given by [63]

χi ≈ μ0

V

(
μ2

u

kBT
+ 4kBT

BA BE

)
. (24)

According to equation (24), the contribution to the initial susceptibility due to
thermoinduced magnetization will be predominant for T > μu

√
BA BE/2kB.
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4.5. Macroscopic quantum tunnelling

Thermally activated magnetization reversal is a well established phenomenon, which has been
studied by a number of experimental techniques [1]. It has, however, been suggested that
macroscopic quantum tunnelling between the minima of the anisotropy energy also may take
place [102–104]. Below a crossover temperature, the relaxation due to quantum tunnelling
should be predominant and the relaxation should therefore be independent of temperature.
Theoretical investigations have shown that such macroscopic quantum tunnelling should be
easier to detect in antiferromagnetic nanoparticles than in ferromagnetic and ferrimagnetic
particles [103, 104].

Several experimental studies of ferromagnetic, ferrimagnetic and antiferromagnetic
nanoparticles have indicated a temperature-independent relaxation below a crossover
temperature of the order of 1 K [105–108]. This may be ascribed to macroscopic quantum
tunnelling. However, it has been suggested that thermoinduced magnetization also can
contribute to a temperature-independent relaxation [62]. It has also been pointed out that
an apparent temperature independence of the relaxation time at low temperatures could
be due to a distribution of energy barriers, �E , which diverges for �E → 0 [109].
Both experimental [110] and theoretical [31, 76, 111] investigations have shown that such
distributions of energy barriers can be found in magnetic nanoparticles.

5. Magnetic interactions between antiferromagnetic nanoparticles

The superparamagnetic relaxation of nanoparticles is very sensitive to interparticle interactions.
Experimental studies of frozen suspensions of ferromagnetic and ferrimagnetic nanoparticles
have shown that magnetic dipole interactions can lead to a divergence of the relaxation time
at a finite temperature, such that equation (2) may be replaced by a Vogel–Fulcher law [112]
or by an expression based on spin-glass models [113]. The critical temperature at which the
relaxation time diverges is of the order of [114]

Tp ≈ μ0

4πkB

μ2

d3
p

, (25)

where dp is the average distance between the particles. Thus, Tp increases with increasing
concentration of particles in the suspensions. Below the critical temperature, the samples may
have magnetic properties, which have similarities to those of spin-glasses [113–116].

The magnetic moments of antiferromagnetic nanoparticles are typically much smaller than
those of ferromagnetic and ferrimagnetic nanoparticles, and therefore the dipole interactions
are insufficient to significantly affect the superparamagnetic relaxation [117]. In fact, the
dipole interactions between antiferromagnetic nanoparticles in close proximity are typically
so small that the related critical temperature is well below 1 K. For example, for particles with
magnetic moments of the order of 300 μB (typical for ferritin [58, 59]) and with an average
centre to centre distance of 8 nm (corresponding to the diameter of typical ferritin cores) the
critical temperature, estimated from equation (25), is of the order of 0.2 K. For 20 nm hematite
particles, which have a magnetic moment due to its canted spin structure, one finds that even
if the particles are in close proximity, the value of Tp is also of the order of 0.2 K [117].
Nevertheless, in several experimental studies of samples of uncoated antiferromagnetic
nanoparticles, it has been found that aggregation can change the magnetic dynamics drastically.
For instance, the temperature where the particles become superparamagnetic can increase by
more than 100 K [117–119]. It has been concluded that exchange interaction between surface
ions of neighbouring particles is responsible for the effect. This implies that the particles are
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in such close proximity that the electronic wavefunctions of atoms at the interfaces overlap.
Because the dipole interactions can be considered negligible in samples of antiferromagnetic
nanoparticles, such samples present a unique possibility to study exchange coupling between
magnetic nanoparticles.

The magnetic energy of a particle, p, which interacts with its neighbour particles, q , may
be written as [21, 99, 117, 120, 121]

Ei = K Vp sin2 θ − Mp ·
∑

q

Jpq Mq , (26)

where Mp and Mq represent the (sublattice) magnetization of the particles p and q , respectively,
and Jpq is an effective exchange coupling constant due to exchange coupling between surface
atoms belonging to the neighbouring particles. The summation in the last term may be
considered as an effective interaction field. If the first term in equation (26) is predominant,
superparamagnetic relaxation may take place between the easy directions close to θ = 0 and
π . However, if the interaction is significant, the energy at the two minima will differ and
the thermal populations will therefore also differ. For strong interactions, there may be only
one energy minimum. At finite temperatures, the sublattice magnetization vectors will mainly
fluctuate around the direction corresponding to the lower energy minimum. If the fluctuations
of the sublattice magnetization directions are fast compared to the timescale of Mössbauer
spectroscopy, the magnetic splitting in the spectra will be proportional to the average hyperfine
field. Variations of the magnitude and direction of the interaction field in the sample result in a
distribution of magnetic hyperfine splittings, which leads to spectra with broadened sextets.

The interactions between nanoparticles can often be modified by varying the preparation
technique. Samples of non-interacting or weakly interacting particles can be obtained by
coating the particles with, for example, oleic acid. Samples of strongly interacting particles
may be obtained by drying, for example, suspensions of uncoated α-Fe2O3 nanoparticles.
Figures 11(a) and (b) show Mössbauer spectra of coated (weakly interacting) and uncoated
(strongly interacting) 20 nm α-Fe2O3 particles, respectively [117]. The spectra of the
coated nanoparticles (figure 11(a)) show the typical behaviour of non-interacting magnetic
nanoparticles, i.e., the simultaneous presence of a doublet and a sextet with a temperature-
dependent area ratio over a broad range of temperatures. Around 240 K, the sextet vanishes and
only a doublet is present, indicating that all particles exhibit fast superparamagnetic relaxation
above this temperature. The spectra of the interacting particles (figure 11(b)) show a completely
different evolution with increasing temperature. Instead of the appearance of a doublet, the
spectra show a substantial asymmetric broadening of the lines of the sextet, and even at
360 K there is no visible doublet. As discussed above, this is typical for Mössbauer spectra
of interacting particles with a distribution of interaction fields. Thus, the large differences
between the spectra in figures 11(a) and (b) illustrate the importance of interparticle interactions
in samples of antiferromagnetic nanoparticles. The spectra of the interacting particles in
figure 11(b) have similarities to the spectrum of superparamagnetic particles at 240 K in an
applied field (figure 11(a), bottom). This is in accordance with the description of the influence
of interactions in terms of an effective interaction field. From an analysis of the temperature
dependence of the hyperfine field distribution, the effective interaction energy and the magnetic
anisotropy constant could be determined [117].

The collective magnetic excitations can also be suppressed by interparticle interactions,
and the expression for the average magnetic hyperfine field (equation (3)) may then be replaced
by [21, 117, 121]

Bobs ≈ B0

[
1 − kBT

2K V + Eint

]
, (27)
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Figure 11. Mössbauer spectra of coated (weakly interacting) (a) and uncoated (strongly
interacting) (b) 20 nm hematite nanoparticles obtained at the indicated temperatures [117].
Reprinted with permission from [117]. Copyright 2000 by the American Physical Society.

where Eint is related to the strength of the interparticle interactions. Figure 12 shows the
temperature dependence of the magnetic hyperfine fields at low temperatures of 8 nm non-
interacting and interacting α-Fe2O3 nanoparticles [122]. The linear temperature dependence
of the data is in accordance with equations (3) and (27). Assuming that the anisotropy energy
constants are identical for the particles of the two samples, an effective interaction energy,
Eint/kB ≈ 1300 K could be estimated from the slopes of the curves in figure 12.

Figure 13 shows inelastic neutron scattering data at Q = 1.37 Å
−1

for weakly and strongly
interacting 8 nm α-Fe2O3 nanoparticles [99]. The data, obtained in zero applied magnetic
field for weakly (a) and strongly (c) interacting particles, show that strong interactions shift
the positions of the inelastic peaks to higher energies, but their relative areas decrease. The
interactions affect both the excitation energy and the area ratio in a way that is similar to the
effect of an applied field (figure 13(b)). Similar results have been found in an inelastic neutron
scattering study of NiO nanoparticles [100].

Recent neutron diffraction experiments [123] have shown that α-Fe2O3 nanoparticles
prepared by a gel–sol method may be attached in such a way that neighbouring particles
have a common crystallographic orientation and a magnetic correlation in the [001]
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Figure 12. Magnetic hyperfine field of coated (open circles) and uncoated 8 nm hematite
nanoparticles obtained from low-temperature Mössbauer spectra. The lines are linear fits to the data
extrapolated to T = 0 K. Reprinted with permission from [122]. Copyright 2005 by the American
Physical Society.

Figure 13. Inelastic neutron data for 8 nm α-Fe2O3 nanoparticles. Data for coated nanoparticles
in (a) zero field and (b) in an applied field of 6 T, respectively. Data for uncoated nanoparticles in
(c) zero field and (d) in an applied field of 6 T, respectively. Reprinted with permission from [99].
Copyright 2006 by the American Physical Society.

direction. Figure 14(a) shows neutron diffraction data for such a sample of 8 nm α-Fe2O3

nanoparticles [123]. Most of the diffraction lines have line widths that are considerably larger
than the instrumental broadening, but in accordance with the particle size estimated from x-ray
diffraction data and electron micrographs. However, the width of the magnetic (003) reflection
is considerably narrower than that of the other peaks. This peak could be well fitted with
two components, one with a line width corresponding to a particle size of about 8 nm and
another with a relative area of about 36% and a width corresponding to a correlation length of
∼22 nm. This suggests that about a third of the particles are present in chains with around three
particles that show oriented attachment such that both the crystallographic and the magnetic
order continue across the interfaces. High-resolution electron microscopy studies confirmed
the existence of such chains of particles with a common crystallographic orientation [123].

Mössbauer studies of interacting α-Fe2O3 nanoparticles have also shown that the
interactions between particles with different relative crystallographic orientations can lead to
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Figure 14. Neutron diffraction data for 8 nm hematite particles obtained at room temperature.
(a) Data for the as-prepared (strongly interacting) sample. (b) Data for the ground sample. Reprinted
with permission from [123]. Copyright 2005 by the American Physical Society.

(This figure is in colour only in the electronic version)

a rotation of the sublattice magnetization directions [122]. In the spectra of α-Fe2O3, there is
a small quadrupole shift, εqs, because of the non-cubic environments of the iron ions, which
give rise to an electric field gradient along the [001] direction. In general, the quadrupole shift
in a Mössbauer spectrum depends on the angle α between the electric field gradient and the
magnetic hyperfine field according to the expression

εqs = ε0
qs(3 cos2 α − 1)/2, (28)

where ε0
qs = 0.20 mm s−1 in α-Fe2O3. Below the Morin transition temperature, the magnetic

hyperfine field is parallel to the electric field gradient, and the quadrupole shift is therefore
0.20 mm s−1. Above the Morin transition in bulk α-Fe2O3 and in non-interacting nanoparticles
at all temperatures, the magnetic hyperfine field is perpendicular to the electric field gradient
and the quadrupole shift is then −0.1 mm s−1. However, in samples of interacting α-
Fe2O3 nanoparticles the quadrupole shift can deviate from this value. Figure 15 shows the
quadrupole shift of non-interacting and interacting 8 nm α-Fe2O3 nanoparticles as a function
of temperature. For the non-interacting nanoparticles, the quadrupole shifts are close to
−0.10 mm s−1, but the interacting nanoparticles show quadrupole shifts of the order of −0.07
to −0.08 mm s−1, indicating that the value of α differs from 90◦ and rather is of the order
of 75◦. This can be explained by rotation of the sublattice magnetization directions induced
by the exchange interactions between neighbouring particles with different crystallographic
orientation [122].

It is also noteworthy that the extrapolations of the temperature dependence of the hyperfine
fields to T = 0 K differ for the non-interacting and the interacting nanoparticles (figure 12).
This is in accordance with a rotation of the sublattice magnetization directions, because the
contribution to the magnetic hyperfine field from the dipole fields of neighbouring magnetic
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Figure 15. Quadrupole shift of coated (weakly interacting) (open circles) and uncoated (strongly
interacting) (solid circles) 8 nm hematite nanoparticles as a function of temperature. Reprinted with
permission from [122]. Copyright 2005 by the American Physical Society.

Figure 16. Schematic illustration of a network of interacting α-Fe2O3 nanoparticles. Reprinted
with permission from [123]. Copyright 2005 by the American Physical Society.

ions depends on the angle between the sublattice magnetization and the [001] direction in
α-Fe2O3 [124]. The measured difference between the extrapolated hyperfine fields was in
accordance with the rotation angle obtained from the analysis of the quadrupole shift [122].

It is likely that the strong suppression of superparamagnetic relaxation in samples of
agglomerated α-Fe2O3 nanoparticles is governed by larger networks of interacting particles
with both parallel and non-parallel [001] axes [122, 123]. Figure 16 shows a schematic
illustration of such a network [123]. Here particles are attached in small chains with parallel
[001] axes, but the neighbouring chains or particles may have different orientations of their
[001] axes. This model describes most of the measured features well.
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The establishment of strong interactions between α-Fe2O3 nanoparticles is a reversible
process [125]. Exposure of an agglomerated sample of 8 nm α-Fe2O3 particles in water to
ultrasound can result in a change of the Mössbauer spectrum from a sextet with broadened lines
to a doublet, but after subsequent drying, the sextet can be re-established. Several Mössbauer
studies have shown that gentle grinding of samples of interacting α-Fe2O3 particles also can
lead to a significant reduction of the interactions [123, 125, 126]. The neutron diffraction
studies of 8 nm α-Fe2O3 nanoparticles (figure 14) showed that the narrow (003) reflection of
interacting particles (figure 14(a)) became broader and had a width comparable to that of the
other reflections after gentle grinding (figure 14(b)). Thus, the oriented attachment seems to
have been destroyed by the grinding.

Goethite (α-FeOOH) is a common mineral and it is usually poorly crystalline, both when
formed in nature and when synthesized in the laboratory. Well crystallized goethite has a
Néel temperature around 393 K [120]. Mössbauer spectra of goethite commonly show sextets
with asymmetrically broadened lines with average hyperfine fields much smaller than the
bulk value. Only in a small temperature range does a doublet coexist with the sextet. The
temperature dependence of the average hyperfine field of goethite nanoparticles has been found
to be in accordance with a simple mean-field model for interacting particles [120]. It has
been suggested [127] that goethite particles consist of smaller, interacting clusters, and that
the spectra may explained by a distribution of precession states in the clusters with different
precession angles, which give rise to different hyperfine fields. In this model, transitions
between the precession states were neglected, and this may not be realistic [117]. Recent
studies have shown that goethite particles may grow via oriented attachment [128–130], and
this suggests that goethite particles in fact may consist of smaller interacting clusters. The
different interpretations have given rise to some debate in the literature [117, 127, 131].

Interactions between NiO nanoparticles have been studied by electron magnetic
resonance [132] and by DC and AC magnetization measurements [133]. As in the case of
α-Fe2O3 nanoparticles, it was found that the superparamagnetic relaxation to a large extent
was suppressed in samples of uncoated particles in comparison with particles coated with oleic
acid. Mössbauer studies of nanoparticles of 57Fe-doped NiO, prepared by heat treatment of
Ni(OH)2, showed similar effects [118]. It has also been found that interparticle interactions
between NiO nanoparticles can be reduced by grinding the samples or by exposing them to
ultrasound [134]. Even suspension in water or long-term exposure to air leads to reduction of
the interparticle interactions. However, unlike α-Fe2O3 nanoparticles, the strong interactions
could not be re-established by drying suspensions of weakly interacting NiO nanoparticles. It
is likely that the different behaviour of α-Fe2O3 and NiO nanoparticles can be explained by
differences in the affinity of the particles to water [134]. Adsorption of water on the surface of
the NiO particles may prevent the formation of strong exchange bonds between the particles,
reducing the interactions between particles.

Mössbauer studies have shown that interactions between nanoparticles of different
antiferromagnetic materials can have unexpected effects on the magnetic properties [119]. For
example, the superparamagnetic relaxation of 9 nm α-Fe2O3 particles was to a large extent
suppressed when they were mixed with nanoparticles of CoO, whereas the opposite effect
was found when the iron oxide particles were mixed with nanoparticles of NiO. The different
influence of CoO and NiO particles may be explained by the smaller magnetic anisotropy
of the NiO nanoparticles [119], but a large affinity of NiO to water may also contribute to
a reduction of the interactions. In samples of mixtures of α-Fe2O3 and NiO nanoparticles,
it was surprisingly found that a Morin transition took place although there was no Morin
transition in the sample consisting solely of the α-Fe2O3 nanoparticles [119]. Mixtures of
antiferromagnetic nanoparticles with ferromagnetic or ferrimagnetic nanoparticles with strong
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interparticle interactions have shown exchange bias and enhanced coercivity [13–16, 135].
Such nanocomposites may therefore have applications as permanent magnets. In a recent
study of core–shell Co–CoO nanoparticles it was shown that exchange interactions between
the antiferromagnetic CoO shells of neighbouring particles can have a significant effect on the
blocking temperature, the coercivity and the exchange bias [136].

6. Summary

The size dependence of the magnetic properties of nanoparticles of antiferromagnetic materials
is in many respects substantially different from that of nanoparticles of ferromagnetic and
ferrimagnetic materials. The magnetic moment of a nanoparticle of a ferromagnetic or
ferrimagnetic material is basically determined by the particle volume and the magnetization,
which may be similar to the bulk value, although surface effects and defects often result in
a (slightly) smaller magnetization. In contrast, the magnetic moment of an antiferromagnetic
nanoparticle is mainly a result of imperfections or finite-size effects, e.g., different numbers
of spins in the sublattices, which lead to an uncompensated moment and a related increase of
the saturation magnetization with decreasing particle size, but thermoinduced magnetization is
also expected to give a contribution to the moment of very small particles.

The small magnetic moments of antiferromagnetic nanoparticles makes the analysis
of magnetization and in-field Mössbauer data much less straightforward than the analysis
of data for ferromagnetic and ferrimagnetic nanoparticles. This is because the isothermal
magnetization curves of particles with very small moments are often far from saturation in the
superparamagnetic regime. Furthermore, the anisotropy may be large compared to the Zeeman
energy, such that the Langevin function is not a good approximation to the magnetization
curves.

As in ferromagnetic and ferrimagnetic nanoparticles, the magnetic excitations of
antiferromagnetic nanoparticles at low temperatures are dominated by the uniform excitations
(q = 0 spin waves). This leads to a linear decrease of the sublattice magnetization with
increasing temperature and a small net magnetic moment that increases with increasing
temperature. The excitation energy of the uniform mode in antiferromagnetic nanoparticles
is much larger than that of ferromagnetic and ferrimagnetic nanoparticles, but even a small
uncompensated moment can have a significant influence on the excitation energy.

Interactions between nanoparticles can have a large influence on the magnetic dynamics,
e.g., the superparamagnetic relaxation. The dipole interaction between antiferromagnetic
nanoparticles in close proximity is insignificant; therefore, the effects must be explained by
exchange interaction between surface atoms of neighbouring nanoparticles. This exchange
interaction can to a large extent be varied by exposing the samples to appropriate macroscopic
treatments such as gentle grinding or exposure to ultrasound. It has been found that
nanoparticles of α-Fe2O3 can be attached in such a way that the crystallographic and magnetic
order continue across the interfaces. Interactions between antiferromagnetic nanoparticles with
different crystallographic orientations can result in rotation of the sublattice magnetization
directions.
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[25] Lefmann K, Bødker F, Klausen S N, Hansen M F, Clausen K N, Lindgård P-A and Mørup S 2001 Europhys.
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